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The effect of wave transformation in a weakly ir-
regular medium consists in the following. Suppose
that two kinds of coupled oscillation are possible, hy
and h,, described by the equations
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Here x is the irregularity parameter. In a uniform
medium we may pass to normal oscillations Hy ,:
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where the wave vectors g, of the normal oscillations
are determined from the equations
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In a weakly irregular medium, when k; , and o are
"slowly varying" functions of the coordinates
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the "quasi-normal" oscillations
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are approximate solutions of (1), where q; 3 are de-
termined from Eq. (2) as before.

In certain areas, and, in particular, in the neighborhood on the
points where gy = qp, solutions of the type (4) become invalid. In pass-
ing through resonance regions of this type the amplitudes of the quasi-
normal oscillations suffer a discontinuous change compared with their
initial values (the Stokes' phenomenon) and there is a redistribution of
energy between the quasi-normal modes of oscillation, The term "wave
transformation” will be used to describe just this phenomenon, and the
resonance points where q1 = qp will be called transformation points.

The phenomenon of wave transformation in a weakly nonhomogeneous
medium has been fairly well studied in connection with various problems

in astrophysics [1-3]and plasma heating [4-6]. Asa formal basis for cal-
culating the transformation coefficients we may use the method devel-
oped by Stueckelberg [T]for the system of equations (1) consisting of match-
ing the asymptotic solutions (4) in passing through the neighborhood of
a transformation point.

When the wave traverses a sufficiently large volume of plasma, the
number of transformation points may be large. Their distribution may
naturally be takento be random and given in the form of some random
function of the coordinate. The question arises of describing the kinet-
ics of waves in a medium with randomly placed transformation points.
The problem bears a formalsimilarity toa system of coupled oscillators
passing through resonances at random moments in time. A method of
solving problems of this type is developed below.

We shall commence by considering a single trans-
formation event. Let the solution of Eq. (1) be rep-

resented in the form
H=AH*+ 4,H,*,

for some values of x to the left of the transformation
region.

On the right of the transformation region the solu-
tion has the form

H = A*H* + AFHy*,

Here the relation between (A;* Ay® and (A, Ay)
is determined by the equation [8]

A* ie'*cos a sine ( Ay
( Ay* ) = sina ie~* cos a) A, )
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Here the integralin § is taken along a contour en-
closing two complex conjugate transformation points;
@ is the phase which is known and is not important in
what follows. Each transformation event may be re-
garded as a wave "collision," and the transition ma-
trix from (A, A,) to (A%, Ag¥ as the collision oper-
ator.

The transition matrix for successive collisions has
the form
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Here the integrals in S, , are taken between the
two closest transformation points. In order to avoid
the possibility of transformation regions overlapping,
we confine ourselves to the case of comparatively in-
frequent collisions and require that

I > 1, (7}

where ! is the mean distance between transformation
points. Inequality (7) leads, in particular, to the fact
that the phase advances S; and S, in (6) are largeand
so the phase ¢ may be neglected.

We shall now assume that the vector Ay with com-

(ors (3? o s .

ponents (A1, A,"") is given at some initial point x,,
and in the path segment to x the wave experiences n
collisions (passes through n transformation points).
Then the vector Ay may be represented in the follow-
ing form at points x:

Aj(w)=M My, -- - MAq (o) .
Here Mk = Mg (xk-1,Xk) and is determined from for-

mula (6), where x isatransformation point, all param-
eters depend on the number k, and the integrals in
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S(ilf)z are calculated on the arc between Xk and xj.
The problem consists in determining the mean values
of ¢ A(x)) averaged over all possible configurations
of transformation point dispositions on (x,,x). We
shall take the transformation points to be distributed
according to a Poisson distribution, and the quantity
a to be constant for the moment (the restriction on a
will be removed later). This means that the proba-
bility of a transformation point occuring in an element
dx is 77! dx.

We shall consider the system
d*U— =iqU —i zé(x—xk (aV—% U)

'g; = gy —z%é{x~xk)(aU——g—V>, (8)

where Xy are transformation points. It is not difficult
to establish that the transition matrix of solutions of
system (8) between two successive transformation
points is identical with (6) if we set

=VaH, V=Ve¢H. (9)

It follows from (9) that the square of the amplitudes
U, V coincide with the effects of the H;- and Hy-os-
cillations, respectively, and the problem of averaging
the solutions of system (1) may be replaced by the
equivalent problem of averaging the solutions of sys-
tem (8).

We now introduce the distribution function f(x,U;,

Uz, V1 s V2) s where
U =ReU, U,=ImU, V,=ReV,

Vo=Im v §javidv,av,av, =1,

The kinetic equation for f may be obtained in the
usual manner (see, for example, [9])

af ‘11U20U +‘I1U1

— Vs g+ Vg = S* {7} (10)
where the collision term has the form
S* 4y = 1 [f (&, Us*, Us®, Vi, Vo¥) — 11,
F=1f(U,Us, Vi, V). (11)

The coordinates Uy ,*, V; ,* are determined from
the condition that they take the values U; 5, Vy,; as
a result of a collision. Equations (10), (11) have the
form of an ordinary Kolmogorov-Feller equation for
a discontinuous random process. From system (8),
or from (5) and (9), we have

U* = U, cosa + V, sin g,

U = —Ujcosa +V,sina,

V¥ = U,sina -+ V,cos q,

Vy* = U,sina —V,cosa. (12)

The quantity

I=[UP+|V|? = q|H)*+ g, |H, | (13)

is invariant under the transformation of (12) as well
as of (5) and (6), and is the total effect of a system of
two oscillations. The effect of the collisions consists
of redistributing the adiabatic invariants of each os-
cillation.

Equations (10), (11) allow us to calculate any mo-
ment of the distribution function f. It is of physical
interest to calculate the average values of the adia-
batic invariants for each type of oscillation, i.e., in
accordance with (13), the averages ¢ | U[2 ), ([V[?).
Multiplying (10) in turn by Us?, U,?, U;U,, V,%.. and
integrating over the entire phase space we obtain

TR — — WSy + TRy + B L,
d:lig) sm sin?a snte oy sm a <Iz>‘_sm2a s,

d (112) (q — lh) <1‘21>,
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Iy —2222¢1yy, I = Ug + U,

=V2+Ve? I,=UV,+UV,=ReUV,
Iy=UV, — UV, = — ImUV. (14)

We may find the steady-state solution from (14)
and (13):

<I1> = <I2> = 1/21, (Im) == <[21> =0. (15)

The result (15) means in particular that if an os-
cillation with a given value of I only is excited at the
plasma boundary, then on passing through a suffi-
ciently wide layer the second oscillation is aroused to
a considerable extent.

We now describe the process of approaching equi-
librium. We look for a solution of system (14) in the
form ~e"X. The equation for « is

SlIl a sin? g

w4

L [ + (g — ‘12)2]

+ 2(q1—q2)2——Si“;“ ~0. (16)
Of the three roots of Eq. (16) one is negative and
two are complex conjugates with negative real parts.
The relaxation length is determined by the root

%y for which |Re »; |is 2 minimum. We shall write
out the values of ®; for some limiting cases:

lo|41—112|>1.
%o = 1] (g1 — @2)* los

"o = — Yy, ly = l/4sin%a

Llan—gl<€1. (17)

In view of the condition that collisions be infrequent
(7), the second case can occur only for sufficiently
small values of (g — q,).

Now if the collision parameter ¢ is taken to beran-
dom with a distribution function w(a),

Sw (@)da =1,
then the collision term S*{f } in Eq. (10) is replacedby

«s* (> = {w (@) §* (f (@) da .
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Similarly sin®a in Eq. (16) must be replaced by
(sin?ady = S w(a)sin?ada .

In conclusion we make two observations. The first is connected with
the fact that we have treated only the transformation points q; = qa.
However, there exist other singular points in the solutions of (4), for
example at points where qy, 2 = 0. It has been shown in [10] that points
of this type lead to a general increase in the mean of the adiabatic in-
variant I of the whole system. The treatment given above assumes, of
course, that transformations such as (5) will have the most important
effects, Secondly, we note that the method presented above may be
simply extended to an arbitrary number of coupled oscillations.
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